А н а л и т и ч е с к а я г е о м е т р и я в п р о с т р а н с т в е - Аналитическая геометрия - Математика - Каталог статей - Сайт для школьников. Рефераты и учебные материалы.
Воскресенье, 04.12.2016, 02:54
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Аналитическая геометрия

А н а л и т и ч е с к а я г е о м е т р и я в п р о с т р а н с т в е

 Преобразования координат

 Параллельный перенос. Гомотетия.

Симметрия. Аффинное преобразование.

 

Рассмотрим ряд преобразований, связанных с переходом из одной системы координат в другую. Здесь ( х,  у , z ) и ( х',  у', z' ) - координаты произвольной точки Р соответственно в старой и новой системе координат.

 

Параллельный перенос. Передвинем систему координат X Y Z в трёхмерном пространстве так, чтобы оси OX, OY и OZ оставались параллельны самим себе, а начало координат О сместилось в точку О' ( a, b, с ). Получим новую систему координат X' Y' Z' .

Координаты точки  Р  в новой и старой системе координат связаны соотношениями:

Гомотетия с центром  О ( a , b , c )  и коэффициентом  k 0 :

Симметрия относительно плоскости XOY :

Аффинное преобразование:



Источник: http://www.bymath.net
Категория: Аналитическая геометрия | Добавил: Kisa (09.03.2009)
Просмотров: 564 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2016
Бесплатный конструктор сайтов - uCoz