А н а л и т и ч е с к а я г е о м е т р и я н а п л о с к о с т и - Аналитическая геометрия - Математика - Каталог статей - Сайт для школьников. Рефераты и учебные материалы.
Воскресенье, 11.12.2016, 05:12
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Аналитическая геометрия

А н а л и т и ч е с к а я г е о м е т р и я н а п л о с к о с т и

Гипербола

 

Гипербола. Фокусы. Уравнение гиперболы. Фокусное расстояние.

Действительная и мнимая оси гиперболы. Эксцентриситет.

Асимптоты гиперболы. Уравнение касательной к гиперболе.

Условие касания прямой и гиперболы.

 

Гиперболой ( рис.1 ) называется геометрическое место точек, модуль разности расстояний от которых до двух заданных точек  F1 и F2 , называемых  фокусами гиперболы, есть величина постоянная.

Уравнение гиперболы ( рис.1 ) :

Здесь начало координат является центром симметрии гиперболы, а оси координат – её осями симметрии.

Отрезок  F1F2 = 2 с ,  где , называется фокусным расстоянием. Отрезок  AB = 2 a называется  действительной осью гиперболы, а отрезок  CD = 2 b мнимой осью гиперболы. Число  e = c / ae > 1 называется эксцентриситетом гиперболы. Прямые   y = ± ( b / a ) x  называются асимптотами гиперболы.

 

Пусть  Р ( х1 ,  у 1 ) – точка гиперболы, тогда  уравнение касательной к гиперболе в данной точке имеет вид:

Условие касания прямой  y = m x + k  и гиперболы  х 2 / a 2  –  у  2 / b = 1 :

 

 

k 2  = m 2 a 2 b 2 .



Источник: http://www.bymath.net
Категория: Аналитическая геометрия | Добавил: Kisa (09.03.2009)
Просмотров: 765 | Рейтинг: 5.0/1
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2016
Бесплатный конструктор сайтов - uCoz