Пятница, 19.04.2024, 07:52
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Основы анализа

О с н о в ы а н а л и з а

Пределы числовых последовательностей

Числовые последовательности. Формула общего члена.

Предел числовой последовательности. Сходящаяся и

расходящаяся последовательности. Ограниченная

 последовательность. Монотонная последовательность.

Теорема Вейерштрасса. Основные свойства пределов.

Некоторые замечательные пределы.

 

Последовательности.  Рассмотрим ряд натуральных чисел:

 

1,  2,  3, … ,  n –1,  n, … .

 

Если заменить каждое натуральное число  n  в этом ряду некоторым числом  un , следуя некоторому закону, то мы получим новый ряд чисел:          

 

u1 ,   u2 ,   u3 , …,   un - 1 ,   un  , …,  кратко обозначаемый { un }  

 

и называемый числовой последовательностью. Величина  un называется общим членом последовательности. Обычно числовая последовательность задаётся некоторой формулой  un = f ( n ), позволяющей найти любой член последовательности по его номеру  n ; эта формула называется формулой общего члена. Заметим, что задать числовую последовательность формулой общего члена не всегда возможно; иногда последовательность задаётся путём описания её членов (см. ниже последний пример).

 

П р и м е р ы    числовых последовательностей:

 

                         1,  2,  3,  4,  5, … -  ряд натуральных чисел ;

 

                         2,  4,  6,  8,  10, … - ряд чётных чисел;

 

                         1.4,  1.41,  1.414,  1.4142, … - числовая последовательность

                                                                            приближённых  значений

                                                                            с увеличивающейся точностью.

В последнем примере невозможно дать формулу общего члена последовательности, тем не менее эта последовательность писана полностью.

Предел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу  a  при увеличении порядкового номера  n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Это определение означает, что  a  есть предел числовой последовательности, если её общий член неограниченно приближается к  a  при возрастании  n. Геометрически это значит, что для любого  > 0  можно найти такое число N,  что начиная с  n > N  все члены последовательности расположены внутри интервала ( a - , a + ). Последовательность, имеющая предел, называется сходящейся; в противном случае – расходящейся.

Последовательность называется ограниченной, если существует такое число M, что | un  | M  для всех  n . Возрастающая или убывающая последовательность называется монотонной.

Теорема Вейерштрасса. Всякая монотонная и ограниченная последовательность имеет предел (эта теорема даётся в средней школе без доказательства). 

Основные свойства пределов.  Нижеприведенные свойства пределов справедливы не только для числовых последовательностей, но и для функций.

Если { un } и { vn }  - две сходящиеся последовательности, то:

Если члены последовательностей { un }, { vn }, { wn } удовлетворяют неравенствам 


 

Некоторые замечательные пределы.

                                                


Источник: http://www.bymath.net
Категория: Основы анализа | Добавил: Kisa (09.03.2009)
Просмотров: 1036 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2024
Бесплатный конструктор сайтов - uCoz