П л а н и м е т р и я - Геометрия - Математика - Каталог статей - Сайт для школьников. Рефераты и учебные материалы.
Суббота, 10.12.2016, 17:36
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Геометрия

П л а н и м е т р и я

Аксиомы геометрии Евклида

 

Аксиома принадлежности. Аксиома порядка.

Аксиома равенства отрезков и углов.

Аксиома параллельных прямых.

Аксиома непрерывности (Архимеда).

 

 

Как мы уже отмечали выше, существует набор аксиом – свойств, которые рассматриваются в геометрии как основные и принимаются без доказательства. Теперь, после введения некоторых основных понятий и определений, мы можем рассматривать следующий достаточный набор аксиом, обычно используемых в планиметрии.

 

Аксиома принадлежности. Через любые две точки на плоскости можно провести прямую и притом только одну.

 

Аксиома порядка.  Среди любых трёх точек, лежащих на прямой, есть не более одной точки, лежащей между двух других.

 

Аксиома конгруэнтности (равенства) отрезков и углов. Если два отрезка (угла) конгруэнтны третьему, то они конгруэнтны между собой.

 

Аксиома параллельных прямых. Через любую точку, лежащую вне прямой, можно провести другую прямую, параллельную данной, и притом только одну.

 

Аксиома непрерывности (аксиома Архимеда).  Для любых двух отрезков  AB  и CD  существует конечный набор точек  A1  , A2  ,…, An , лежащих на прямой AB, таких, что отрезки  AA1 , A1A2 ,…, An - 1An  конгруэнтны отрезку

CD, a точка B лежит между A и An .

 

Следует подчеркнуть, что замена одной из этих аксиом на другую, превращает её в теорему, уже требующую доказательства. Так, вместо аксиомы параллельных прямых можно использовать в качестве аксиомы свойство углов треугольника («сумма углов треугольника равна 180º »). Но тогда необходимо доказывать аксиому о параллельных прямых.



Источник: http://www.bymath.net
Категория: Геометрия | Добавил: Kisa (06.03.2009)
Просмотров: 482 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2016
Бесплатный конструктор сайтов - uCoz