Математическая индукция - Алгебра - Математика - Каталог статей - Сайт для школьников. Рефераты и учебные материалы.
Суббота, 03.12.2016, 09:46
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Алгебра

Математическая индукция

Математическая индукция

 

 

    Пусть требуется доказать некоторое свойство ( это может быть формула, тождество, неравенство, утверждение и т.д.), зависящее от натурального числа  n. Если:

 

    1)  это свойство имеет место для некоторого натурального числа  n0 ,

    2)  из условия справедливости этого свойства  при  n = k  следует его

         справедливость при  n = k + 1  для любого  k n0 ,

 

    то тогда это свойство имеет место для любого натурального  n n0 .

 

    П р и м е р .   Доказать, что  1 + 3 + 5 + ... + ( 2n – 1 ) = n 2 .

 

                           Для доказательства применим метод математической индукции.

                           Очевидно, что при  n = 1 данное равенство справедливо. Предположим,

                           что оно справедливо при некотором  k , т.е. имеет место

 

                                                              1 + 3 + 5 + ... + ( 2k – 1 ) = k 2 .

 

                           Докажем, что тогда оно имеет место и при  k + 1 . Рассмотрим

                           соответствующую сумму при  n = k + 1 :

 

                           1 + 3 + 5 + ... + ( 2k – 1 ) + ( 2k + 1 ) = k 2 + ( 2k + 1 ) = ( k  + 1 ) 2 .

 

                           Таким образом, из условия, что это равенство справедливо при

                           k  вытекает, что оно справедливо и при  k + 1, значит оно справедливо

                           при любом натуральном  n , что и требовалось доказать.



Источник: http://www.bymath.net
Категория: Алгебра | Добавил: Kisa (05.03.2009)
Просмотров: 610 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2016
Бесплатный конструктор сайтов - uCoz