Четверг, 28.03.2024, 21:50
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Алгебра

Основы векторного исчисления

Основы векторного исчисления

 

Вектор. Нулевой вектор. Длина (модуль) вектора.

Коллинеарные векторы. Компланарные векторы.

Равенство векторов. Сложение и вычитание векторов.

Законы сложения. Законы умножения вектора на число.

Скалярное произведение векторов и его свойства.

Единичные ортогональные векторы.

Векторное произведение векторов и его свойства.

Необходимое и достаточное условие коллинеарности векторов.

Необходимое и достаточное условие компланарности векторов.

 

Вектор – это направленный отрезок, соединяющий две точки в пространстве или в плоскости. Векторы обычно  обозначаются либо маленькими буквами, либо начальной и конечной точками. Сверху обычно ставят чёрточку.

Например, вектор, направленный из точки A к точке B, можно обозначить a, 

                                                     __ 

Нулевой вектор  0  или  0 - это вектор, у которого начальная и конечная точки совпадают, т.e. A = B. Отсюда, 0 =0.

Длина (модуль) вектора  a  - это длина отображающего его отрезка  AB, обозначается | a |. В частности,  | 0 | = 0.

Векторы называются коллинеарными, если их направленные отрезки лежат на параллельных прямых. Коллинеарные векторы  a и b  обозначаются  a || b.

Три и более векторов называются компланарными, если они лежат в одной плоскости.

 

Сложение векторов. Так как векторы - это направленные отрезки, то их сложение может быть выполнено геометрически. (Алгебраическое сложение векторов изложено ниже, в пункте «Единичные ортогональные векторы»). Предположим, что

                                                               __                  __ 

                                                      a = AB  and   b = CD , 

тогда вектор                                                     __      __

                                                      b  =  AB + CD

 

есть результат выполнения двух операций:

 

a)  параллельного переноса одногоиз векторов таким образом, чтобы его начальная точка совпала с конечной точкой второго вектора;

 

б)  геометрического сложения, т.е. построения результирующего вектора, идущего от начальной точки неподвижного вектора к конечной точке перенесённого вектора.

 

 

Вычитание векторов. Эта операция сводится к предыдущей путём замены вычитаемого вектора на противоположный:   a   b  = a + ( b ) .

 

Законы сложения.

 

    I.       a + b  = b + a  ( П е р е м е с т и т е л ь н ы й   закон ).

    II.   ( a + b ) + c = a + ( b + c )  ( С о ч е т а т е л ь н ы й   закон ).

    III.    a + 0 = a .

    IV.    a + ( a ) = 0 .

Законы умножения вектора на число.

 

     I.      1 · a = a ,  0 · a = 0 ,  m · 0 = 0 ,  ( 1 ) · a = a .

     II.     m a = a m ,  | m a | = | m | · | a | .

     III.    m ( n a ) = ( m n ) a .          ( С о ч е т а т е л ь н ы й   

                                                              закон умножения на число ).

     IV.    ( m + n ) a = m an a ,   ( Р а с п р е д е л и т е л ь н ы й

            m ( a + b ) = m a + m b .     закон умножения на число ).

 

Скалярное произведение векторов.   __     __

Угол между ненулевыми векторами  AB и CD – это угол, образованный векторами при их параллельном переносе до совмещения точек A и C. Скалярным произведением векторов a и b называется число, равное произведению их длин на косинус угла между ними:

 

 

Если один из векторов нулевой, то их скалярное произведение в соответствии с определением равно нулю: 

 

( a , 0 ) = ( 0 , b ) = 0 .

 

Если оба вектора ненулевые, то косинус угла между ними вычисляется по формуле:

 

Скалярное произведение ( a , a ), равное | a | 2, называется скалярным квадратом. Длина вектора  a  и его скалярный квадрат связаны соотношением: 

 

Скалярное произведение двух векторов:

   -  положительно, если угол между векторами острый ;

   -  отрицательно, если угол между векторами тупой .

 

Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда угол между ними прямой, т.е. когда эти векторы перпендикулярны (ортогональны):

 

 

Свойства скалярного произведения. Для любых векторов  a , b , c и любого числа m справедливы следующие соотношения:

 

I.   ( a , b ) = ( b , a ) .          ( П е р е м е с т и т е л ь н ы й   закон )

II.  ( m a , b ) = m ( a , b ) .

III. ( a + b , c ) = ( a , c ) + ( b , c )( Р а с п р е д е л и т е л ь н ы й   закон )

           




Источник: http://www.bymath.net
Категория: Алгебра | Добавил: Kisa (05.03.2009)
Просмотров: 1089 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2024
Бесплатный конструктор сайтов - uCoz