Деление многочлена на линейный двучлен - Алгебра - Математика - Каталог статей - Сайт для школьников. Рефераты и учебные материалы.
Суббота, 03.12.2016, 09:45
Приветствую Вас Гость | RSS

Школьник

Меню сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Анализ страниц сайта

Каталог статей

Главная » Статьи » Математика » Алгебра

Деление многочлена на линейный двучлен

Деление многочлена на линейный двучлен

 

 Линейный двучлен. Теорема Безу.

 

Линейный двучлен есть многочлен первой степени:   a x + b. Если разделить многочлен, содержащий букву  x , на линейный двучлен  x b, где  b – некоторое число (положительное или отрицательное), то остаток будет только многочленом нулевой степени (см. параграф "Деление многочленов), т.е. некоторым числом  N , которое можно определить, не находя частного. Более точно, это число равно значению многочлена, получаемому при  x = b. Это свойство вытекает из теоремы Безу:   многочлен  a0 xm + a1 xm-1 + a2 xm-2 + …+ am  делится на двучлен   xb   с остатком  N = a0 bm + a1 bm-1 + a2 bm-2 + …+ bm .

 

Д о к а з а т е л ь с т в о .  В соответствии с определением операции деления многочленов (см. параграф "Деление многочленов”) мы имеем:

 

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = ( x – b ) Q + N ,

         

где Q – некоторый многочлен, N – некоторое число.

Подставим  x = b , тогда слагаемое ( xb ) Q  обращается в нуль, и мы получаем:

 

a0 bm + a1 bm-1 + a2 bm-2 + …+ am = N .

 

З а м е ч а н и е .  При  N = 0  число b является корнем уравнения: 

 

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = 0 .

Теорема доказана.



Источник: http://www.bymath.net
Категория: Алгебра | Добавил: Kisa (04.03.2009)
Просмотров: 1822 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Облако тэгов

Copyright MyCorp © 2016
Бесплатный конструктор сайтов - uCoz